diketahui bahwa 1 1 3

sinikau miliki soal yang perintahnya diketahui bahwa 1 min 1 per 3 dikali 1 per 4 dikali 1 min 1 per 5 dikali 1 min 1 per 6 dan seterusnya per 2015 kali 1 Min t f 2016 = n Min 2013/2016 nomor dengan Sorry nih Kecamatan 1 Min sepertiga adalah 2 per 300 per 4 adalah 3 atau 45 adalah 4 per 55 per 6 dan seterusnya sehingga ada pola di sini di mana 6 per 7 + 1 Min menjadi 2014 ini menjadi 2015-2016 sebagai yang terakhir sehingga jika kita tulis bisa menjadi seperti bentuk ini2 per 3 dikali 3 per
b amati pola perkalian beberapa bilangan awalDiketahui bahwa (1 + 1/2)(1 + 1/3)(1 + 1/4)(1 + 1/5)(1 + 1/n) = 11 berapakah nilai n yang memenuhi ? a. sederhanakan bilangan yang di dalam kurung. b. amati pola perkalian beberapa bilangan awal. c. Dengan mengamati,tentukan nilai n yang memenuhi persamaan diatas
Kelas 11 SMAInduksi MatematikaPrinsip Induksi MatematikaPrinsip Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0103sigma n=1 4 2n+3=. . . .02081+2+4+8+. 2^n-1= 2^n -1 untuk setiap bilangan asli n0337Dengan induksi matematika, buktikan Pn = 1^2 +2^2 +3^2...0357Buktikan melalui induksi matematik bahwa 1/12+1/...Teks videojika melihat hal seperti ini maka dapat diselesaikan dengan menggunakan induksi matematika di mana pernyataan ini kita asumsikan dengan fungsi P N maka pertama dengan menggunakan induksi matematika langkah pertama kita substitusikan N = 1 maka p 1 harus kita tunjukan benar kemudian ngakak2 kita asumsikan PK benar maka TK + 1 akan kita tunjukan juga benar maka dari sini kita cari terlebih dahulu langkah pertamanya yaitu subtitusikan N = 1 maka kita akan tunjukan T1 harus benar maka PH 1 akan ekuivalen dengan 1 pangkat 3 = 1 atau 4 x 1 kuadrat dikali 1 + 1 kuadrat maka akan = 1 = 1 atau 4 x 2 kuadrat adalah 44 dibagi 4 adalah 1 maka dari sini kita dapat menunjukkan 1 = 1 karena ruas kiri dan kanan sama maka P1 dapat kita Nyatakan benar kemudian Langkah kedua kita subtitusikan n = k maka PKI nya akan = 1 ^ 3 + 2 ^ 3 + 1 + nya Hingga k ^ 3 = 1 per 4 x kuadrat 3 x + 1 kuadrat kemudian kita subtitusikan PK + 1 maka kita harus Tunjukkan bahwa ini juga benar maka 1 ^ 3 + 2 ^ 3 + seterusnya hingga k ^ 3 Q + dengan K + 1 ^ 3 a k = 1 per 4 x + 1 kuadrat dikali dengan K + 1 + 1 kuadratmaka dari sini jika kita Sederhanakan kita peroleh dari 1 ^ 3 sampai dengan K ^ 3 akan sama dengan 1 per 4 x kuadrat dikali x + 1 kuadrat ditambah dengan K + 1 ^ 3 akan sama dengan 1 per 4 x + 1 dikali 3 + 2 kuadrat kemudian kita samakan ruas kiri dan ruas kanan ya maka dari sini kita peroleh ruas kiri nya adalah = 1 per 4 x dengan x kuadrat x + 1 kuadrat ditambah dengan K + 1 ^ 3 karena di sini kita ingin menyamakan terlebih dahulu penyebutnya maka kita kali dengan 4/4 pada ca + 1 ^ 3 kemudian kita keluarkan 1/4dan K + 1 kuadrat Nya sehingga kita peroleh 1 per 4 dikali dengan K + 1 kuadrat dikali dengan k kuadrat + 4 k + 1 lalu kita Sederhanakan sehingga 1/4 x k + 1 kuadrat dikali dengan k kuadrat + 4 k + 4 kemudian kita faktorkan kita cari pemfaktoran yang jika kita kalikan menghasilkan 4 tetapi jika kita jumlahkan menghasilkan 4 k, maka dari sini ke faktornya adalah = 1 per 4 x + 1 kuadrat dikali K + 2 kuadrat kemudian kita ketahui bahwa pada ruas kanan nya adalah = 1 per 4 x + 1 kuadrat dikali K + 2 kuadrat karenakita tahu ruas kiri dan ruas kanan yang sama maka dari sini dapat kita simpulkan bahwa Langkah kedua dapat kita tunjukan atau terbukti benar kemudian karena pada soal ini langkah 1 dan angka 2 benar maka dapat kita simpulkan bahwa pernyataan ini juga benar untuk setiap n bilangan asli sekian sampai jumpa di pembahasan-soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Diketahuibahwa (1+1/2)(1+1/3)(1+1/4)(1+1/5)(1+1/n)=11. Berapakah nilai n yang memenuhi? Dengan mengamati, tentukan nilai n yang yang memenuhil persamaan di atas.
Contoh Soal Deret Geometri beserta Jawabannya Lengkap Kelas 11 – Pembahasan kali ini kami ingin mengulas kumpulan contoh soal deret geometri beserta jawabannya lengkap kelas 11. Apa itu deret geometri dan bagaimana rumus serta cara perhitungannya? Jika aritmatika merupakan barisan atau deretan angka dengan pola tertentu, geometri ini adalah jumlah dari barisan aritmatika tersebut. Suku-suku yang dijumlahkan mempunyai rasio tetap rasio = perbandingan antar suku. Misalnya, rasio antara suku kedua dengan pertama sama seperti rasio suku ketiga dengan yang kedua. Materi ini menjadi salah satu kurikulum pelajaran matematika di kelas 11 dan bahkan ada di mata kuliah. Maka dari itu, agar lebih mudah dipahami, berikut kami berikan kumpulan contoh soal deret geometri beserta jawabannya lengkap kelas 11 dari beberapa sumber terpercaya. Contoh Soal Barisan Geometri dan Deret GeometriDaftar IsiContoh Soal Barisan Geometri dan Deret GeometriSoal 1 Menentukan r rasioSoal 2 Menentukan UnSoal 3 Menentukan SnContoh Soal Deret Geometri SederhanaContoh Soal Deret Geometri Beserta Jawabannya Lengkap Kelas 11Contoh Soal Deret Geometri Tak Hingga Daftar Isi Contoh Soal Barisan Geometri dan Deret Geometri Soal 1 Menentukan r rasio Soal 2 Menentukan Un Soal 3 Menentukan Sn Contoh Soal Deret Geometri Sederhana Contoh Soal Deret Geometri Beserta Jawabannya Lengkap Kelas 11 Contoh Soal Deret Geometri Tak Hingga Sebelum membahas lebih jauh tentang contoh soal deret geometri beserta jawabannya lengkap kelas 11, pahami dulu tentang tiga rumus dasar yang digunakan dalam barisan dan deret geometri berikut ini Soal 1 Menentukan r rasio Jika dalam barisan geometri diketahui 1, 3, 9, 27, 81, …. Berapakah rasio dari deret tersebut? Pembahasan Diketahui a = 1, ditanyakan r = ? Maka r = Un / Un-1 r = U2 / U1 r = 3 / 1 r = 3 Jadi, rasio nilai r dari barisan geometri tersebut yaitu 3. Soal 2 Menentukan Un Un merupakan suku ke-n dalam suatu deret atau barisan dengan rumus Un = arn-1. , berikut contoh soalnya Dengan susunan bilangan geometri 1, 3, 9, 27, 81, …. Hitung berapa suku ke-6 dari barisan tersebut Un = 6. Pembahasan Un = arn-1 U6 = ar6-1 = 1 x 35 = 1 x 243 = 243 Jadi, nilai dari suku keenam dalam deret bilangan tersebut adalah 243. Soal 3 Menentukan Sn Sn merupakan jumlah dari semua suku-suku dalam barisan geometri. Untuk lebih mudah dalam memahami, berikut salah satu contoh soal deret geometri beserta jawabannya lengkap kelas 11 dalam perhitungan Sn Deret geometri 1, 3, 9, 27, 81, …. Hitunglah berapa nilai Sn dalam deret tersebut n = 3 ! Pembahasan a Sn = a rn – 1 / r – 1 S3 = 1 33 – 1 / 3 – 1 S3 = 1 x 26 / 2 S3 = 13 Maka, nilai dari Sn untuk n = 3 adalah 13. Contoh Soal Deret Geometri Sederhana Dalam contoh soal deret geometri beserta jawabannya lengkap kelas 11 paling sederhana menggunakan rumus Sn = a rn – 1 / r – 1. Berikut kami berikan beberapa contoh soalnya agar lebih mudah dipahami. Soal 1 Apabila diketahui suatu deret angka 5 + 15 + 45 + … Maka, berapakah jumlah 6 suku pertama dari deret tersebut? Pembahasan Diketahui a = 5, r = 3 Sehingga jumlah enam suku pertama yakni Sn = a rn – 1 / r – 1 S6 = 5 36 – 1 / 3 – 1 = / 2 = Jadi, jumlah dari 6 suku pertama barisan geometri tersebut adalah Soal 2 Berikut contoh soal deret geometri beserta jawabannya lengkap kelas 11 lainnya yang sering keluar saat ujian. Diketahui barisan geometri adalah 3, 6, 12, 24, 48, … . Berapa jumlah 7 suku pertamanya? Pembahasan Diketahui a = 3, r = 2, n = 7 Sehingga jumlah enam suku pertama yakni Sn = a rn – 1 / r – 1 S6 = 3 27 – 1 / 2 – 1 = 381 / 1= 381 Jadi, hasil dari jumlah tujuh suku pertama deret geometri tersebut adalah 381. Soal 3 Diketahui suatu bilangan membentuk deret geometri 4 + 12 + 36 + 108 +… Carilah berapa jumlah dari tujuh suku pertamanya! Diketahui a = 4, r = 3, n = 7 Sehingga jumlah enam suku pertama yakni Sn = a rn – 1 / r – 1 S6 = 4 37 – 1 / 3 – 1 = 4372 Maka dari hasil perhitungan, jumlah tujuh suku pertamanya adalah 4372. Soal 4 Dalam suatu deret membentuk 4 + 2 + 1 + 1/2 + ¼ ….. Hitunglah berapa jumlah barisan geometri dari susunan suku tersebut! Jawaban Diketahui a = 4 dan r = ½ Ditanyakan Sn = ? Sn = a / 1 – r = 4 / 1 – ½ = 4 / ½ = 4 x 2 = 8 Jadi, jumlah barisan geometri dari susunan bilangan tersebut adalah 8. Contoh Soal Deret Geometri Beserta Jawabannya Lengkap Kelas 11 Deret geometri umumnya digunakan pada perhitungan panjang lintasan bola. Bola dijatuhkan dari ketinggian tertentu, kemudian terus memantul yang membentuk ketinggian berbeda-beda hingga berhenti. Sehingga rasio dalam kasus tersebut yakni perbandingan tinggi pantulan pertama kali dengan tinggi mula-mulanya. Atau bisa juga dari perbandingan tinggi pantulan kedua dengan pertama. Berikut kami berikan contoh soal deret geometri beserta jawabannya lengkap kelas 11 lainnya Soal 1 Suatu spesies bakteri melakukan pembelahan diri jadi dua untuk setiap detik. Apabila di awal terdapat lima bakteri, berapa waktu yang dibutuhkan agar pembelahan tersebut menjadi 320 bakteri? Pembahasan Dari soal cerita tersebut diketahui a = 5, r = 2, Un = 320. Ditanyakan n = ? Un = arn -1 320 =5 x 2n -1 2n -1 = 320/5 2n -1 = 64 2n -1 = 26 n = 7 Sehingga, waktu yang diperlukan untuk membelah diri hingga menjadi 320 bakteri yakni 7 menit. Soal 2 Dalam suatu susunan bilangan yang membentuk deret geometri, diketahui bahwa suku pertamanya 3 serta suku ke sembilan adalah 768. Jadi, berapa suku ke-7 dari deret bilangan tersebut? Pembahasan Diketahui a = 3, U9 = 768 Un = arn-1 768 = 3 r9-1 768 = 3 x r8 r8 =768/3 r8 = 256 r8 = 28 r = 2 Maka suku ketujuh adalah U7 = 3 x 26 = 194. Contoh Soal Deret Geometri Tak Hingga Dalam contoh soal deret geometri beserta jawabannya lengkap kelas 11 juga ada jenis deret tak hingga yang dibedakan menjadi dua, yaitu divergen dan konvergen. Berikut kami berikan penjelasan perbedaan dan contoh soalnya Soal 1 Deret Geometri Tak Hingga Kategori Divergen Disebut divergen apabila dalam barisan angka tersebut nilainya semakin membesar dan tidak terhingga. Misalnya dalam deret angka 1 + 2 + 4 + 8 + 16 …. Kemudian dalam soal ditanyakan berapa nilai jumlah dari seluruh angka dalam barisan tersebut, maka tidak dapat dihitung dikarenakan nilainya yang terus membesar dan tidak terhingga. Soal 2 Deret Geometri Tak Hingga Kategori Konvergen Dalam contoh soal deret geometri beserta jawabannya lengkap kelas 11 lebih sering ditanyakan tentang baris tak hingga konvergen. Bedanya, dalam barisan konvergen ini nilainya semakin kecil sehingga bisa dihitung. Misalnya dalam barisan 4 + -2 + 1 + -1/2 + ¼ + …. Carilah berapa Stak hingga Pembahasan Rumus yang digunakan untuk Stak hingga adalah a / 1 – r Stak hingga = a / 1 – r = 4 / 1 –-1/2 = 4 / 1 + ½ = 4 / 3/2 = 4 x 2/3 = 8/3 Sehingga, nilai dari jumlah deret geometri tak terhingga tersebut adalah 8/3. Nah, di atas telah kami berikan contoh soal deret geometri beserta jawabannya lengkap kelas 11. Cukup mudah dipahami bukan? Kunci dalam mengerjakan geometri adalah dengan memahami tiga rumus utama seperti sudah kami cantumkan pada pembahasan pertama. Melalui kumpulan contoh soal deret geometri beserta jawabannya lengkap kelas 11 semoga bisa memberikan pengetahuan bagi para siswa, selamat belajar. Klik dan dapatkan info kost di dekatmu Kost Jogja Harga Murah Kost Jakarta Harga Murah Kost Bandung Harga Murah Kost Denpasar Bali Harga Murah Kost Surabaya Harga Murah Kost Semarang Harga Murah Kost Malang Harga Murah Kost Solo Harga Murah Kost Bekasi Harga Murah Kost Medan Harga Murah
SoalNomor 3. Diketahui bahwa $\vec{a} = \begin{pmatrix} 1 \\ 2 \\-3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 4 \\ 4 \\ m \end{pmatrix}$, dan $\vec{c}= \begin{pmatrix} 3 \\-4 \\ 5 \end{pmatrix}$. Jika $\vec{a} \perp \vec{b}$, maka hasil dari $\vec a + 2 \vec b-\vec c = \cdots \cdot$
Sudah siap hadapi UTBK tahun 2022 nanti? Yuk, tingkatkan persiapanmu dengan latihan soal UTBK 2022 TPS Pengetahuan Kuantitatif beserta pembahasannya di bawah ini. Selamat mengerjakan! — Subtopik Bilangan Level HOTS 1. Nilai dari adalah …. Kunci Jawaban C Pembahasan Ingat bahwa Dengan menggunakan rumus pemfaktoran tersebut, dimana a = 999 dan b = 1, diperoleh perhitungan berikut. Dengan demikian, nilai dari adalah Jadi, jawaban yang tepat adalah C. Subtopik Statistika Level HOTS 2. Rata-rata lima bilangan asli adalah 12. Jika bilangan asli y ditambahkan ke dalam data tersebut, maka rata-rata enam bilangan tersebut merupakan bilangan bulat positif. Nilai y terkecil yang mungkin adalah …. 0 1 6 12 18 Kunci Jawaban C Pembahasan Misal kelima bilangan tersebut adalah a, b, c, d, dan e. Diketahui bahwa rata-ratanya adalah 12, maka diperoleh hasil perhitungan sebagai berikut. Kemudian, diketahui jika ditambahkan suatu bilangan y ke dalam data tersebut, rata-ratanya merupakan bilangan bulat positif. Perhatikan hasil perhitungan berikut! Agar merupakan bilangan bulat positif dengan y merupakan bilangan asli, maka nilai haruslah bilangan yang habis dibagi 6, yaitu bilangan kelipatan 6. Bilangan asli kelipatan 6 dimulai dari 6, 12, 18 dan seterusnya. Dengan demikian, nilai terkecil yang mungkin adalah 6. Jadi, jawaban yang tepat adalah C. Subtopik Geometri Level HOTS 3. In the coordinate plane, line g passes through the origin and perpendicular to a line that has slope -3. If points -6, b and a, 1 are on line g, then the value of a – b is …. -15 1 5 16 21 Kunci Jawaban C Pembahasan Diketahui bahwa “line g passes through the origin and perpendicular to a line that has slope -3“. Artinya, garis g melalui titik asal, yaitu 0, 0 dan tegak lurus dengan suatu garis yang memiliki gradien -3. Ingat bahwa pada dua garis yang saling tegak lurus, berlaku Oleh karena itu, gradien garis g dapat ditentukan sebagai berikut. Karena garis g melalui titik asal 0, 0 dan memiliki gradien maka persamaan garis g dapat ditentukan sebagai Kemudian, diketahui pula bahwa “points -6, b and a, 1 are on line g“. Artinya, titik -6, b dan a, 1 berada pada garis g. Selanjutnya, nilai a dan b dapat ditentukan sebagai berikut. Pada soal, yang ditanyakan adalah “the value of a – b“. Artinya, nilai dari a – b, yaitu sebagai berikut. Jadi, jawaban yang tepat adalah C. Subtopik Statistika dan Peluang Level HOTS 4. Enam pasang suami istri datang menghadiri sebuah pesta. Semua tamu undangan tidak saling mengenal kecuali dengan pasangan mereka masing-masing. Saat pesta dimulai, semua pasangan mulai saling berkenalan dengan cara saling berjabat tangan dengan orang yang tidak mereka kenal. Hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan adalah … Kuantitas P lebih besar daripada Q. Kuantitas P lebih kecil daripada Q. Kuantitas P sama dengan daripada Q. Tidak dapat ditentukan hubungan antara kuantitas P dan Q. Kunci Jawaban B Pembahasan Karena pada pesta tersebut terdapat enam pasang suami istri, maka banyaknya orang pada pesta tersebut adalah sebanyak 12 orang. Jabat tangan dilakukan oleh 2 orang saja. Dalam hal ini, banyak jabat tangan yang terjadi sama saja dengan banyaknya cara memilih 2 orang dari 12 orang. Dengan demikian, didapat perhitungan sebagai berikut. Dapat diperhatikan bahwa sebanyak enam pasang suami istri sudah saling mengenal satu sama lain sehingga tidak perlu ikut berjabat tangan. Dengan demikian, banyak jabat tangan yang terjadi adalah 66 – 6 = 60 jabat tangan. Oleh karena itu, didapat nilai dari P = 60. Karena diketahui Q = 66, maka hubungan yang benar adalah kuantitas P lebih kecil daripada Q. Jadi, jawaban yang tepat adalah B. Subtopik Geometri Level HOTS 5. The number of sides of a polygon is n and the sum of the interior angles is . Which is the correct relation between quantities of P and Q based on the information provided? The quantity of P is greater than Q. The quantity of P is less than Q. The quantity of P is equal to Q. The information provided is not enough to decide which option is correct. Kunci Jawaban A Pembahasan Diketahui bahwa “The number of sides of a polygon is n and the sum of the interior angles is ” yang artinya jumlah sisi suatu poligon segi banyak adalah n dan jumlah sudut dalamnya adalah . Ingat bahwa jumlah sudut dalam suatu segi- n adalah Oleh karena itu, diperoleh hasil perhitungan sebagai berikut. Kemudian, pada kolom Q tertulis “the number of sides of a hexagon” yang artinya adalah jumlah sisi pada segi enam. Ingat! Segi enam memiliki enam buah sisi. Karena P = 7 dan Q = 6, maka diperoleh P > Q. Dengan demikian, jawaban yang tepat adalah the quantity of P is greater than Q. Jadi, jawaban yang tepat adalah A. Subtopik Aljabar 6. Jika dan , maka …. A. -2B. 2C. 4D. -2 dan 2E. -4 dan 4 Jawaban D Pembahasan Perhatikan Subtopik Aljabar 7. Jika x menyatakan dari 30 dan y menyatakan 36% dari 50, maka hubungan x dan y yang tepat adalah …. Jawaban B Pembahasan Perhatikan Subtopik Bilangan 8. 1, -1, 2, 0, 3, 2, 4, 5, 5, …. A. 6B. 7C. 8D. 9E. 10 Jawaban D Pembahasan Perhatikan pola berikut! Jadi, bilangan berikutnya adalah 9. Subtopik Bilangan 9. Perhatikan pola bilangan berikut ini! Nilai x yang tepat adalah …. 23 40 46 53 60 Jawaban D Pembahasan Perhatikan pola berikut! Jadi, nilai x yang tepat adalah 53. Subtopik Geometri 10. Perhatikan segitiga berikut! Jika ABC adalah segitiga sama sisi, maka y – x =…. 20 40 60 80 100 Jawaban C Pembahasan Subtopik Aljabar 11. Manakah fungsi yang berpotongan dengan sumbu X di titik 3,0 ? 1, 2, dan 3 SAJA yang benar. 1 dan 3 SAJA yang benar. 2 dan 4 SAJA yang benar. HANYA 4 yang benar. SEMUA pilihan benar. Jawaban Pembahasan Subtopik Bilangan 12. Suatu tes terdiri dari 30 soal. Setiap jawaban benar mendapat skor 5, jawaban kosong mendapat skor 1, dan jawaban salah mendapat skor 0. Setelah tes selesai, 4 orang peserta tes memberikan pernyataan. 1 Anton memeroleh skor 147 2 Budi memeroleh skor 144 3 Ciko memeroleh skor 143 4 Dodi memeroleh skor 141 Peserta yang berkata jujur ditunjukkan oleh nomor …. 1, 2, dan 3 SAJA yang benar. 1 dan 3 SAJA yang benar. 2 dan 4 SAJA yang benar. HANYA 4 yang benar. SEMUA pilihan benar. Jawaban D Pembahasan Diketahui jawaban benar = 5 Jawaban kosong = 1 Jawaban salah = 0 Perhatikan pernyataan keempat peserta berikut. 1 Pernyataan Anton memeroleh skor 147 sisa 2, maka Jawaban benar = 29 Jawaban kosong = 2 Jawaban salah = 0 Anton berbohong, karena jumlah soal hanya 30. 2Pernyataan Budi memeroleh skor 144 sisa 4, maka Jawaban benar = 28 Jawaban kosong = 4 Jawaban salah = 0 Budi berbohong, karena jumlah soal hanya 30. 3 Pernyataan Ciko memeroleh skor 143 sisa 3, maka Jawaban benar = 28 Jawaban kosong = 3 Jawaban salah = 0 Ciko berbohong, karena jumlah soal hanya 30. 4 Pernyataan Dodi memeroleh skor 141 sisa 1, maka Jawaban benar = 28 Jawaban kosong = 1 Jawaban salah = 1 Dodi berkata jujur, karena jumlah soal tepat 30. Jadi, peserta yang berkata jujur hanya Dodi. Subtopik Geometri 13. Perhatikan gambar berikut! Diketahui BD dan CE adalah diameter lingkaran. Jika , maka sudut yang besarnya lebih dari 40o adalah …. 1, 2, dan 3 SAJA yang benar. 1 dan 3 SAJA yang benar. 2 dan 4 SAJA yang benar. HANYA 4 yang benar. SEMUA pilihan benar. Jawaban C Pembahasan Subtopik Peluang 14. Dua buah dadu dilempar sebanyak 72 kali secara bersamaan. Pernyataan yang benar ditunjukkan oleh nomor …. 1 Frekuensi harapan munculnya mata dadu berjumlah genap adalah 10 kali 2 Frekuensi harapan munculnya mata dadu berjumlah ganjil adalah 10 kali 3 Peluang munculnya mata dadu berjumlah 5 adalah 4Peluang munculnya angka 1 pada salah satu dadu adalah 1, 2, dan 3 SAJA yang benar. 1 dan 3 SAJA yang benar. 2 dan 4 SAJA yang benar. HANYA 4 yang benar. SEMUA pilihan benar. Jawaban B Pembahasan Jumlah variasi angka yang muncul ketika dua buah dadu dilemparkan adalah nS = 36. 1 Frekuensi harapan munculnya mata dadu berjumlah genapadalah 10 kali benar Susunan mata dadu berjumlah genap yaitu maka ngenap = 5 Sehingga, frekuensi harapan munculnya mata dadu berjumlah genap yaitu 2 Frekuensi harapan munculnya mata dadu berjumlah ganjil adalah 10 kali salah Susunan mata dadu berjumlah ganjil yaitu maka nganjil = 6 Dengan demikian, peluang munculnya mata dadu berjumlah ganjil yaitu 3 Peluang munculnya mata dadu berjumlah 5 adalah benar Susunan mata dadu berjumlah 5 yaitu maka n5 = 4 Dengan demikian, peluang munculnya angka dadu berjumlah 5 yaitu 4 Peluang munculnya angka 1 pada salah satu dadu adalah salah Susunan kemunculan angka 1 yaitu maka n1 = 10 Dengan demikian, jumlah frekuensi harapan munculnya angka kembar yaitu Subtopik Bilangan 15. Manakah yang habis dibagi 3 apabila 2k + 1 habis dibagi 3? 1, 2, dan 3 SAJA yang benar. 1 dan 3 SAJA yang benar. 2 dan 4 SAJA yang benar. HANYA 4 yang benar. SEMUA pilihan benar. Jawaban A Pembahasan Diketahui 2k + 1 habis dibagi 3, maka 2k + 1 merupakan kelipatan 3. Sehingga terdapat bilangan bulat n sedemikian sehingga 2k + 1 = 3n. 1 2k + 4 Perhatikan bahwa merupakan kelipatan 3. 2 6 k Perhatikan bahwa merupakan kelipatan 3. 3 4 k + 8 Perhatikan bahwa merupakan kelipatan 3. 4 2k – 9 Perhatikan bahwa bukan merupakan kelipatan 3. Jadi, yang habis dibagi 3 ditunjukkan pada nomor I, II, dan III. Subtopik Bilangan 16. Jika p dan q adalah dua bilangan bulat, berapakah p – q ? Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Pernyataan 2 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 1 SAJA tidak cukup. DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan dan pernyataan 2 SAJA cukup. Pernyataan 1 dan pernyataan 2 tidak cukup untuk menjawab pertanyaan. Jawaban CPembahasan Pernyataan 1 pq = 8 q Maka didapat Pernyataan 1 saja tidak cukup untuk menjawab pertanyaan. Pernyataan 2 p + q = 10 Dalam hal ini, terdapat banyak kemungkinan nilai p – q , selama p dan q adalah bilangan bulat yang memenuhi p + q = 10 . Sebagai contoh, Pernyataan 2 saja tidak cukup untuk menjawab pertanyaan. Masing-masing pernyataan tidaklah cukup, maka perlu dicek gabungan kedua pernyataan. Gabungan pernyataan 1 dan 2 pq = 8 q dan p + q = 10. Berdasarkan pernyataan 1 diperoleh p = 8 Berdasarkan pernyataan 2 diperoleh Sehingga, Jadi, DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Subtopik Aljabar 17. Berapakah usia Dea sekarang? 1 Jumlah usia Dea dan Ema adalah 28 tahun. 2 Lima tahun lalu, usia Ema sama dengan dua kali usia Dea. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Pernyataan 2 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 1 SAJA tidak cukup. DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan dan pernyataan 2 SAJA cukup. Pernyataan 1 dan pernyataan 2 tidak cukup untuk menjawab pertanyaan. Jawaban CPembahasan Pernyataan 1 Jumlah usia Dea dan Ema adalah 28 tahun. Misalkan usia Dea sekarang = D Usia Ema sekarang = E Diperoleh Pernyataan 1 saja tidak cukup untuk menjawab pertanyaan. Pernyataan 2 Lima tahun lalu, usia Ema sama dengan dua kali usia Dea. Misalkan usia Dea sekarang = D Usia Ema sekarang = E Diperoleh Pernyataan 2 saja tidak cukup untuk menjawab pertanyaan. Masing-masing pernyataan tidaklah cukup, maka perlu dicek gabungan kedua pernyataan. Gabungan pernyataan 1 dan 2 Jumlah usia Dea dan Ema adalah 28 tahun dan lima tahun lalu, usia Ema sama dengan dua kali usia Dea. Berdasarkan pernyataan 1 diperoleh Berdasarkan pernyataan 2 diperoleh Sehingga, Jadi, DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Subtopik Geometri 18. Apakah segitiga ABC adalah segitiga sama kaki? Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Pernyataan 2 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 1 SAJA tidak cukup. DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan dan pernyataan 2 SAJA cukup. Pernyataan 1 dan pernyataan 2 tidak cukup untuk menjawab pertanyaan. Jawaban BPembahasan Pernyataan 1 . Ingat bahwa segitiga sama kaki memiliki 2 sudut yang besarnya sama. Dalam satu segitiga, jumlah sudut-sudutnya adalah 180o. Maka, Dalam hal ini, tidak dapat dipastikan Sehingga, segitiga ABC belum tentu segitiga sama kaki. Pernyataan 1 saja tidak cukup untuk menjawab pertanyaan. Pernyataan 2 . Ingat bahwa segitiga sama kaki memiliki 2 sudut yang besarnya sama. Pernyataan 2 saja cukup untuk menjawab pertanyaan. Jadi, pernyataan 2 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 1 SAJA tidak cukup. Subtopik Geometri 19. Berapakah volume kubus 1 Panjang rusuk kubus adalah 5 cm. 2 Luas permukaan kubus adalah 150 cm2. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Pernyataan 2 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 1 SAJA tidak cukup. DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan dan pernyataan 2 SAJA cukup. Pernyataan 1 dan pernyataan 2 tidak cukup untuk menjawab pertanyaan. Jawaban DPembahasan Pernyataan 1 Panjang rusuk kubus adalah 5 cm. Untuk mengetahui volume kubus, kita perlu mengetahui panjang rusuk kubus. Pernyataan 1 saja cukup untuk menjawab pertanyaan. Pernyataan 2 Luas permukaan kubus adalah 150 cm2. Panjang rusuk kubus dapat diketahui dengan menggunakan rumus luas permukaan kubus Dengan demikian, volume kubus adalah Pernyataan 2 saja cukup untuk menjawab pertanyaan. Jadi, pernyataan 1 SAJA cukup untuk menjawab pertanyaan dan pernyataan 2 SAJA cukup. Subtopik Peluang 20. Sebuah kotak berisi 21 bola yang terdiri dari bola merah, bola kuning, dan bola hijau. Berapakah peluang terambilnya bola hijau dari satu kali pengambilan? 1 Kotak berisi 8 bola merah dan 6 bola kuning. 2 Perbandingan banyaknya bola merah dan kuning adalah Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Pernyataan 2 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 1 SAJA tidak cukup. DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan dan pernyataan 2 SAJA cukup. Pernyataan 1 dan pernyataan 2 tidak cukup untuk menjawab pertanyaan. Jawaban APembahasan Pernyataan 1 Kotak berisi 8 bola merah dan 6 bola kuning. Diketahui kotak tersebut berisi 21 bola, maka banyaknya bola hijau maka, peluang terambilnya bola hijau dari satu kali pengambilan Pernyataan 1 saja cukup untuk menjawab pertanyaan. Pernyataan 2 Perbandingan banyaknya bola merah dan kuning adalah . Dalam hal ini, tidak diketahui jumlah bola merah dan bola kuning. Maka tidak dapat dihitung banyaknya masing-masing bola merah dan bola kuning. Pernyataan 2 saja tidak cukup untuk menjawab pertanyaan. Jadi, pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Subtopik Aljabar 21. Segelas kopi dibuat dengan mencampurkan 2 sendok makan bubuk kopi dan x sendok makan gula. Perbandingan banyaknya bubuk kopi dan gula dalam segelas kopi adalah . Manakah hubungan yang tepat antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan? JAWABAN A PEMBAHASAN Diketahui perbandingan bubuk kopi dan gula = Perhatikan, Jadi, dan , maka . Subtopik Bilangan 22. Diketahui n adalah bilangan bulat terkecil yang habis dibagi 2, 3, dan 5. JAWABAN A PEMBAHASAN Karena n adalah bilangan bulat terkecil yang habis dibagi 2, 3, dan 5, maka n adalah KPK dari 2, 3, dan 5 yaitu 30. Maka, Subtopik Bilangan 23. Diketahui . Manakah hubungan yang tepat antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan? JAWABAN B PEMBAHASAN Perhatikan bahwa Dengan demikian, Subtopik Geometri 24. Diketahui sudut x penyikunya 15o. JAWABAN B PEMBAHASAN Perhatikan bahwa, Sehingga pelurusnya Subtopik Peluang 25. Tersedia 5 buah kursi yang disusun melingkar. Manakah hubungan yang tepat antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan? JAWABAN C PEMBAHASAN Banyak susunan lima orang duduk pada kursi yang disediakan dapat dihitung menggunakan rumus permutasi siklis sebagai berikut Nah, itulah beberapa kumpulan latihan soal UTBK TPS Pengetahuan Kuantitatif yang bisa kamu jadikan bahan belajarmu untuk persiapan SBMPTN 2022 mendatang. Gampang kan? Nggak ada sulit kalau kamu rajin latihan. Yuk, berlatih lebih banyak soal lagi dengan ikut tryout UTBK di ruanguji. Psst, soal-soal dan sistem penilaiannya sama seperti UTBK aslinya, lho! Yakin nggak mau cobain?
7SMP. Matematika. ALJABAR. Diketahui bahwa (1 + 1/2) (1 + 1/3) (1 + 1/4) (1 + 1/5) (1 + 1/n) = 11. Berapakah nilai n yang memenuhi? a. Sederhanakan bilangan yang di dalam kurung. b. Amati pola perkalian beberapa bilangan awal. c. Dengan mengamati, tentukan nilai n yang yang memenuhi persamaan di atas.
SAMahasiswa/Alumni Universitas Negeri Malang31 Oktober 2021 1146Hallo RZF, kakak bantu jawab ya .... Ingat kembali deret teleskopik adalah deret bilangan dimana setiap sukunya saling menghilangkan satu sama lain. Diketahui 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 dapat disederhanakan menjadi 1-1/31-1/41-1/51-1/6...1-t/20151-t/2016 = n-2013/2016 3/3-1/34/4-1/45/5-1/56/6-1/6...1-1/20151-1/2016 = n-2013/2016 2/33/44/55/6 ... 2014/20152015/2016 = n - 2013/2016 Jika dihilangkan satu sama lain maka 2/2016 = n - 2013/2016 n = 2/2016 + 2013/2016 n = 2015/2016 Dengan demikian, nilai n adalah 2015/2016. semoga membantu ^^Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Buktikanbahwa: 1 3 + 2 3 + 3 3 + + n 3 = ¼n 2 (n + 1) 2 1. Tunjukkan kebenarannya untuk n=1 1 3 = ¼ × 1 2 × 2 2 Benar. 2. Asumsikan benar untuk n=k 1 3 + 2 3 + 3 3 + + k 3 = ¼k 2 (k + 1) 2 Benar (Asumsi!) Jawaban: Sekarang, buktikan kebenarannya untuk "k+1" 1 3 + 2 3 + 3 3 + + (k + 1) 3 = ¼(k + 1) 2 (k + 2) 2 ?
Ayo, persiapkan dirimu sejak dini dalam menghadapi UTBK 2021! Lihat latihan soal tryout UTBK Episode 1 tahun 2021 untuk mata pelajaran Matematika IPA. — Sudah mengikuti tyout UTBK 1 dari ruanguji? Nah, masih penasaran mengenai pembahasan soal-soalnya? Yuk, lihat latihan soal tryout UTBK Episode 1 tahun 2021 untuk mata pelajaran Matematika IPA berikut ini. Jangan lupa untuk mempelajari lagi materi yang belum kamu kuasai ya. 1. Suatu perusahaan memproduksi x unit barang dengan biaya ribu rupiah untuk tiap unit. Jika barang tersebut terjual habis dengan harga untuk tiap unit, maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah …. Pembahasan Misalkan fx menyatakan total biaya produksi x unit barang, g x menyatakan harga jual x unit barang dalam satuan ribu rupiah, dan hx menyatakan kentungan yang diperoleh atas penjualan x unit barang, maka diperoleh hasil-hasil sebagai berikut. Agar maksimum, nilai turunan pertama hx harus bernilai 0. Maka Diperoleh x = -1 atau x = 2. Karena x menyatakan jumlah barang dan nilainya tidak mungkin negatif atau pecahan, sehingga x yang diambil adalah x = 2. Dilakukan substitusi x = 2 ke hx, didapat Maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah Jadi, jawabannya adalah B. 2. Sebuah balok memiliki panjang rusuk AB = 6 dan BC = CG = 4. Jika titik P terletak di tengah rusuk AB dan θ adalah sudut antara EP dan PG, maka nilai cosθ adalah …. Pembahasan Perhatikan gambar berikut ini! Perhatikan bahwa Sehingga Jadi, jawabannya adalah E. 3. Himpunan bilangan real x pada selang yang memenuhi memiliki bentuk Nilai dari adalah …. Pembahasan Perhatikan bahwa Pembuat nolnya adalah Maka didapat nilai-nilai x yang memenuhi adalah Didapat garis bilangannya sebagai berikut. Karena tanda pertidaksamaannya adalah maka didapat solusinya adalah Sehingga intervalnya adalah Akibatnya, Jadi, jawabannya adalahA. 4. Diketahui sebuah segitiga ABC dengan sudut B adalah 1050 dan sudut A adalah 150. Jika panjang AC adalah 5, maka panjang BC adalah …. Pembahasan Perhatikan gambar berikut ini! Dari gambar tersebut, didapat Dengan menggunakan aturan sinus, Jadi, jawabannya adalah E. 5. Diketahui vektor-vektor dan . Jika maka interval x yang memenuhi adalah …. Pembahasan Dari soal diketahui bahwa Maka Kemudian, karena , maka sehingga Lalu perhatikan bahwa dan juga Karena Sehingga didapat Pembuat nol dari bentuk di ruas kiri adalah Didapat garis bilangan sebagai berikut. Karena tanda pertidaksamaannya adalah maka solusinya adalah Namun, karena pada soaldiketahui maka diambil irisannya, yaitu Sehingga, interval x yang memenuhi adalah Jadi, jawabannya adalah B. 6. 25 26 27 576 676 Pembahasan Dengan menggunakan sifat-sifat pada eksponen, diperoleh sehingga Dengan demikian, kita peroleh Jadi, jawaban yang tepat adalah B. 7. Diketahui sistem persamaan Jika sistem persamaan tersebut memiliki tepat satu penyelesaian, maka jumlah semua nilai m yangmungkin adalah …. – 32 – 20 – 16 – 8 – 4 Pembahasan Penyelesaian sistem persamaan pada soal dapat diselesaikan sebagai berikut. Karena sistem persamaan di atas meiliki tepat satu penyelesaian, maka nilai Sehingga Maka jumlah semua nilai m adalah -8. Jadi, jawaban yang tepat adalah D. 8. – 2 – 6 0 2 6 Pembahasan Ingat kembali beberapa sifat yang berlaku pada integral, yaitu Dengan menggunakan kedua sifat tersebut, diperoleh Dengan demikian, Jadi, jawaban yang tepat adalah B. 9. Pembahasan Perhatikan bahwa Dengan demikian, Jadi, jawaban yang tepat adalah E. 10. Jika digeser sejauh a satuan ke kanan dan sejauh b satuan ke bawah, kemudian dicerminkan terhadap sumbu-y , bayangannya menjadi Nilai dari 3ab adalah …. – 15 – 12 – 10 – 6 0 Pembahasan Garis digeser sejauh a satuan ke kanan dan sejauh b satuan ke bawah, maka sehingga dan Dengan substitusi dan ke , maka bayangan garis hasil pergeseran diatas adalah Kemudian garis tersebut dicerminkan terhadap sumbu-y, maka Dengan substitusi ke , maka hasil pencerminan garis terhadap sumbu-y adalah Dengan demikian, kita peroleh Jadi, jawaban yang tepat adalah C. 11. Diketahui sistem persamaan berikut. Jika maka nilai dari adalah …. Pembahasan Kita tuliskan dua persamaan yang ada pada soal, yaitu sebagai berikut. dan Eliminasi dengan cara berikut. Oleh karena itu, didapat nilai sebagai berikut. Dengan demikian, nilai dari adalah sebagai berikut. Jadi, jawaban yang tepat adalah D. 12. Sebuah lingkaran memiliki pusat p, q dengan jari-jari 12, dan menyinggung garis Nilai yang mungkin adalah …. Pembahasan Diketahui bahwa suatu lingkaran memiliki pusat p, q, jari-jari 12, dan menyinggung garis . Oleh karena itu, didapat sebagai berikut. Kemudian, garis dapat dituliskan sebagai Didapat nilai a, b, dan c sebagai berikut. a = 5 b = 12 c = – 13 Selanjutnya, dapat diperhatikan perhitungan di bawah ini. Terdapat dua kemungkinan yaitu Kemungkinan pertama Kemungkinan kedua Dengan demikian, nilai yang mungkin adalah -143 dan 169. Jadi, jawaban yang tepat adalah D. 13. Suku banyak habis dibagi dan dibagi bersisa 20. Nilai ab adalah …. – 16 – 4 4 8 16 Pembahasan Dapat diperhatikan pembagian polinomial berikut ini. Oleh karena itu, didapat persamaan berikut. Kemudian, diketahui bahwa Oleh karena itu, substitusi dan Dikarenakan . Akibatnya, diperoleh nilai ab sebagai berikut. Dengan demikian, nilai ab = 16. Jadi, jawaban yang tepat adalah E. 14. Seorang berkendara dengan kecepatan 100 km/jam selama satu jam pertama. Pada jam kedua, kecepatan berkurang menjadi seperlimanya. Demikian juga pada jam berikutnya. Jarak terjauh yang dapat ditempuh orang tersebut adalah … km. 150 125 100 75 50 Pembahasan Dapat diperhatikan bahwa jarak yang ditempuh oleh seseorang pada jam pertama adalah 100 km. Kemudian, diketahui bahwa kecepatannya berkurang pada jam kedua. Akibatnya, jarak yang ditempuh orang tersebut pada jam kedua adalah Begitupun seterusnya sehingga jarak yang ditempuh orang tersebut dapat dituliskan sebagai berikut. Jarak yang ditempuh oleh seseorang tersebut membentuk deret geometri tak hingga dengan a = 100 dan r = sehingga dapat dituliskan sebagai berikut. Oleh karena itu, jarak terjauh yang dapat ditempuh orang tersebut adalah 125 km. Jadi, jawaban yang tepat adalah B. 15. Garis dirotasi searah jarum jam sebesar 1800 terhadap titik asal. Kemudian, digeser ke bawah sejauh b satuan dan ke kiri sejauh a satuan sehingga bayangannya menjadi . Nilai adalah …. Pembahasan Ingat bahwa jika suatu benda dirotasi sebesar searah jarum jam, maka sudut rotasinya diberi tanda negatif, sehingga menjadi Diketahui bahwa garis dirotasi sebesar 1800 searah jarum jam terhadap titik asal, maka bayangannya adalah sebagai berikut. Oleh karena itu, didapat nilai x dan y sebagai berikut. Akibatnya, garis menjadi Kemudian, digeser ke bawah sejauh b satuan dan ke kiri sejauh a satuan atau dapat dituliskan sebagai Didapat nilai x dan y berikut ini Akibatnya, garis menjadi Diketahui pada soal bahwa sama dengan Didapat dan Oleh karena itu, nilai dapat dihitung dengan cara sebagai berikut Dengan demikian, nilai Jadi, jawaban yang tepat adalah A. 16. maka nilai dari adalah …. Pembahasan Diketahui maka didapat Selanjutnya diketahui maka didapat Sehingga didapat Oleh karena itu didapat Dengan demikian, nilai dari adalah 0. Jadi, jawaban yang tepat adalah C. 17. Misalkan fungsi f memenuhi untuk setiap Jika maka nilai dari adalah …. – 3 3 – 5 6 – 6 Pembahasan Ingat bahwa Jika f periodik dengan periode p, maka Suatu fungsi f adalah periodik jika terdapat suatu bilangan p sedemikian sehingga Karena periodik dengan periode 4. Sehingga berlaku Dengan menggunakan sifat integral di atas, maka Dengan demikian, nilai dari adalah 6. Jadi, jawaban yang tepat adalah D. 18. Dari angka-angka 1, 4, 5, 6, 8, 9 akan dibentuk bilangan genap yang terdiri dari 3 digit berbeda. Banyak bilangan yang terbentuk yang nilainya kurang dari 400 adalah …. 30 20 12 9 8 Pembahasan Diketahui angka-angka 1, 4, 5, 6, 8, 9. Misalkan bilangan yang akan dibentuk adalah a1a2a3. a1 adalah angka yang menempati ratusan, a2 adalah angka yang menempati puluhan, dan a3 adalah angka yang menempati satuan. Karena akan dibentuk bilangan genap, maka banyak angka yang menempati satuan yaitu a3 ada 3 angka 4, 6, 8 Kemudian bilangan yang dibentuk nilainya kurang dari 400, maka banyak angka yang menempati ratusan yaitu a1 ada 1 angka 1 Selanjutnya perhatikan bahwa bilangan terdiri dari 3 digit berbeda, maka banyak angka yang menempati puluhan yaitu a2 ada 4 angka yang tersisa Sehingga didapat Dengan demikian, banyak bilangan yang terbentuk yang nilainya kurang dari 400 adalah 12. Jadi, jawaban yang tepat adalah C. 19. Diketahui barisan aritmetika dengan Uk menyatakan suku ke-k. Jika Uk+2 = U2 + kU17 – 3, maka U1+U13 +U19+U35= …. Pembahasan Perhatikan bahwa Sehingga didapatkan Dengan demikian, Jadi, jawaban yang tepat adalah E. 20. Suku banyak dibagi bersisa Nilai dari adalah …. 32 48 – 26 – 48 – 52 Pembahasan Perhatikan bahwa Selanjutnya perhatikan pembagian berikut ini. Diketahui maka Sehingga didapatkan dan Dengan demikian, Jadi, jawaban yang tepat adalah A. UTBK memang masih akan dilaksanakan tahun depan, tapi nggak ada salahnya untuk kamu mencuri start dan mulai mempersiapkan diri sejak dini. Mau mengukur kemampuanmu dalam mengerjakan soal-soal UTBK? Tunggu tryout UTBK Episode 2 dari ruanguji!
.

diketahui bahwa 1 1 3